

Ministry of Communication and Information Technology

MOBILE BROADBAND SPECTRUM IN INDONESIA

Dr Muhammad Budi Setiawan
Director General of Resources and Standard
Ministry of Communication and Information Technology
Republic of Indonesia
APAC Public Policy Forum - GSMA Mobile Asia Expo 2013
Shanghai, 27 June 2013

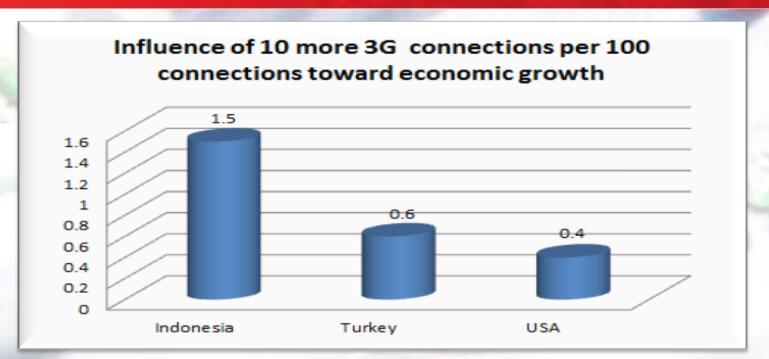
Outlines

- 1. Background
- 2. Additional Bandwidth for 3G Operators in 2.1 GHz
 - Impact of penetration 3G Service on The Economy
 - Band Plan 2.1 GHz and Market Share
 - 3G Spectrum Demand
 - 2.1 GHz Spectrum Auction (Block 11 and 12)
- 3. Digital Dividend in Indonesia
 - Impact of Broadband on The Economy
 - 700 MHz Band Plan
 - Strategy to Accelerate Digital Dividend in Indonesia

Background

- 1. Spectrum is a valuable and limited resource.
- 2. The spectrum crunch in Indonesia.
- 3. Exponential growth in data traffic (phenomenon of I-phone, tablet, android, etc.)
- 4. The development of mobile broadband is higher than fixed broadband in developing countries.
- 5. Spectrum demand of mobile broadband:
 - ITU-R Report M.2078: 1280 1700 MHz additional bandwidth in 2020.
 - FCC-US and OFCOM-UK: 500 MHz additional bandwidth in 2020.
 - Australia: 150 MHz in 2015, 150 MHz additional bandwidth in 2020.
 Currently Australia has 800 MHz bandwidth.
 - Currently, Indonesia has 425 MHz effective bandwidth.

NATIONAL MID-TERM DEVELOPMENT PLAN (RPJMN): YEAR 2010 –2014


- 1. Penetration of Internet user : ≥ 50% population.
- 2. Penetration of Broadband user : ≥ 50% population.
- 3. Penetration of Digital TV coverage : ≥ 35% population.
- 4. Number of Districts/Cities served by Broadband networks: 75% from total.
- 5. Most likely Broadband Development will be covered by Mobile Broadband.
- 6. Spectrum demand study for National Broadband Development is urgently needed.

MINISTRY OF COMMUNICATION AND INFORMATION TECHNOLOGY REPUBLIC OF INDONESIA

Additional Bandwidth for 3G Operators in 2.1 GHz

Impact of Penetration 3G Service on The Economy

Source : What is the impact of mobile telephony on economic Growth – Deloitte

A Report for the GSM Association

Band Plan 2.1 GHz

3G Spectrum Demand

Rsub x Market Share x No of total subscriber

BW req =

Bit Efficiency x no of site x Nsec x Lbh x Of

Spectral efficiency:

<u> Dimensioning Parameters :</u>

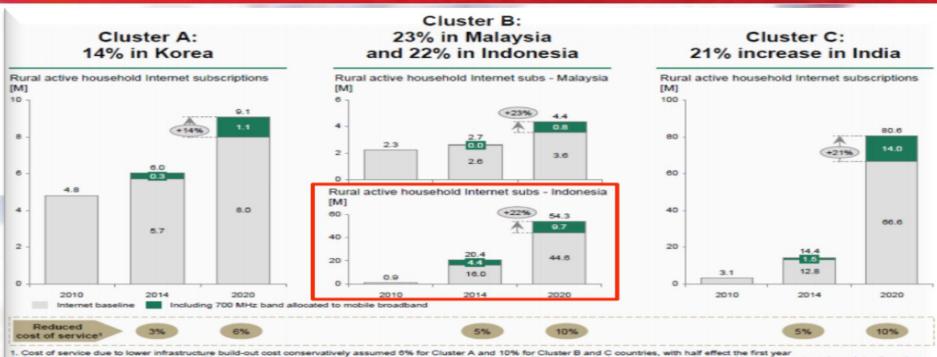
Technology	Spectral Efficiency per sector				
2G – GSM	0.06				
2.5G - GPRS/EDGE	0.11				
3G - WCDMA (UMTS)	0.55				
3,5G – HSPA	0.82				
HSPA Rel 7	1.1				
HSPA+ Rel 7	1.29				
2,5G CDMA	0.17				
2,5G CDMA 1xRTT	0.37				
3G-3,5G-EVDO	0.82				
4G – LTE	1.3				
LTE 2x2 MIMO Rel8	1.5				

Parameters	Value
Bit Efficiency	1.29 (HSPA+ Rel7)
Busy Hour average loading (Lbh)	50%
Required user data rate (Rsub)	0.256 Mbps
Overbooking factor (Of)	20
No of sectors per site (Nsec)	3
Bit Efficiency	1.29
Busy Hour average loading (Lbh)	50%

Ministry of Communication and Information Technology

Dimensioning Calculation

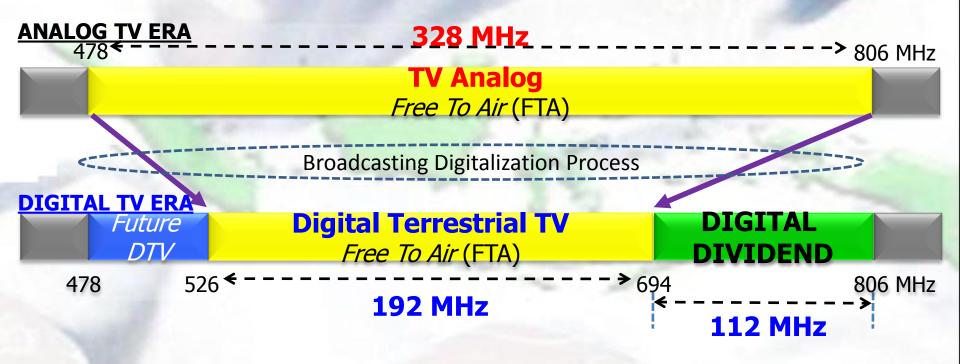
Operator	Band Plan	Technology	U/L	D/L	BW FDD	Spectral Efficiency	Market Share	Total BTS in Jakarta	Total Subscribers in Jakarta	Required BW	Surplus/ Defisit BW
Telkomsel	2100	UMTS/HSPA	2130 - 2135	1940 - 1945	5	1.29	41.10%	1566	4,110,000	17.36	- 2.36
	2100	UMTS/HSPA	2125 - 2130	1935 - 1940	5	1.29					
Indosat	2100	UMTS/HSPA	1950 - 1955	2140 - 2145	5	1.29	17.50%	810	1,750,000	14.29	-4.29
	2100	UMTS/HSPA	1955 - 1960	2145 - 2150	5	1.29					
XL	2100	UMTS/HSPA	1960 - 1965	2150 - 2155	5	1.29	17%	756	1,700,000	14.87	0.23
	2100	UMTS/HSPA	1965 - 1970	2155 - 2160	5	1.29					
НСРТ	2100	UMTS/HSPA	1920 - 1925	2110 - 2115	5	1.29	4.80%	463	480,000	6.86	3.14
	2100	UMTS/HSPA	1945 - 1950	2135 - 2140	5	1.29					
NTS (AXIS)	2100	UMTS/HSPA	1930 - 1935	2120 - 2125	5	1.29	3%	497	300,000	3.99	6.01
	2100	UMTS/HSPA	1935 - 1940	2125 - 2130	5	1.29					


^{*}ASSUMED Total Subscriber in Jakarta 10 Million

MINISTRY OF COMMUNICATION AND INFORMATION TECHNOLOGY REPUBLIC OF INDONESIA

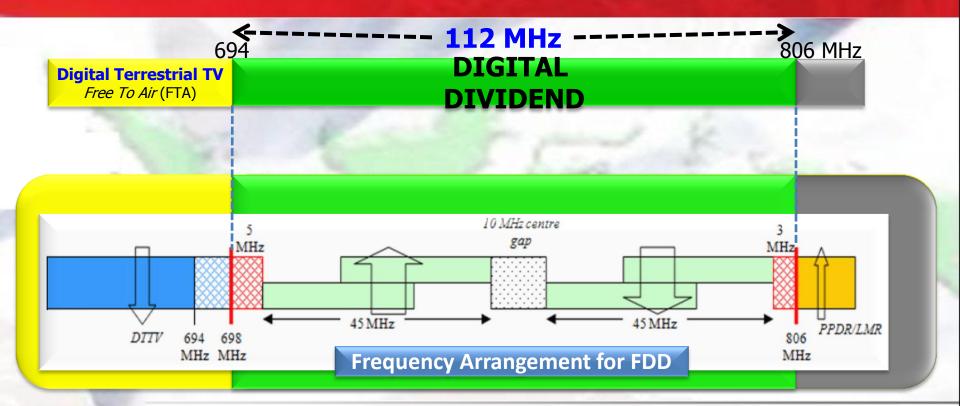
Digital Dividend in Indonesia

Impact of Broadband on The Economy

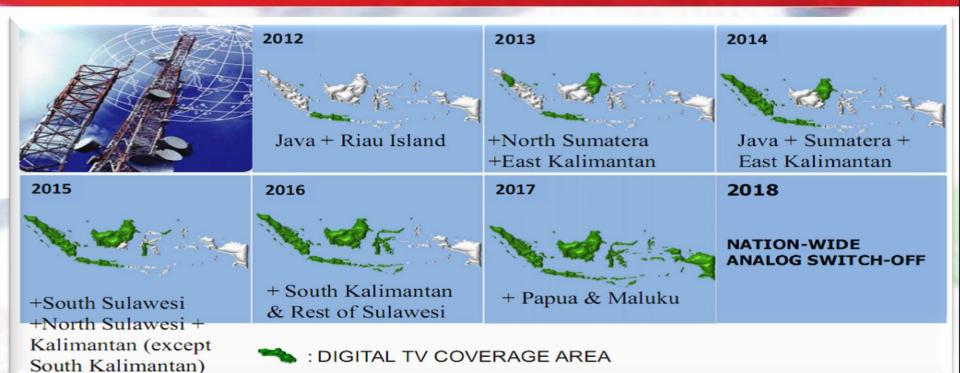


Cost of service due to lower infrastructure build-out cost conservatively assumed 6% for Cluster A and 10% for Cluster B and C countries, with half effect the first year
 For comparison, roll-out is assumed in 2014 for all countries, while the potential reduced impact of delaying is illustrated for Indonesia in the "Implications for governments and regulators" section Source: GSMA: ITU; Industry: BCG analysis

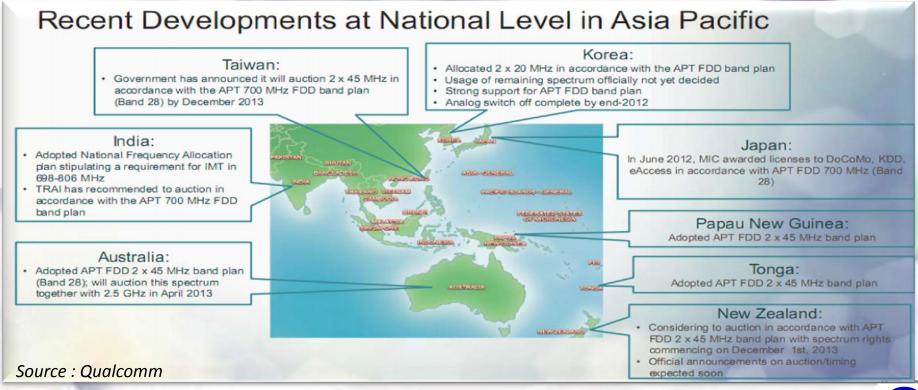
THE BOSTON CONSULTING GROUP



Digital Dividend



Spectrum Allocation For Mobile Broadband



Digital TV Roll Out Plan: 2012-2017

Frequency Harmonization With Other Countries

Strategy to Accelerate Digital Dividend in Indonesia

- Only less than 7% Spectrum Fee Revenue been used for ICT Sector. The rest is used for general purposes.
- Most of the spectrum fees coming from mobile cellular industry contribution (more than 90%)
- Possible action to request some portion of that revenues for accelerating spectrum refarming including refarming in Digital Dividend
- Need of comprehensive strategic policy and economy campaign to convinces relevant parties (i.e Ministry of Finance, Parliament, etc), i.e:
 - Mobile Broadband will contribute significant growth in GDP, increasing productivity and efficiency in transportation, reducing energy subsidy.
- Joint Announcement with Singapore, Brunei and Malaysia to commit to adopt APT band plan on 700MHz (18 June 2013, CommunicAsia)

Thank you for your attention...

Ministry of Communication and Information Technology Republic of Indonesia